

Solar Methane Reforming Demonstrations Steam-Methane Reforming (2010-2020)

- Based on compact, processintensive, microchannel process technology
- Solar-to-Chemical Energy Conversion Efficiency: ~70%
- Commercial Demonstrations in 2021

Solar Methane Reforming Demonstrations CO₂-Methane Reforming (~1990-1993)

Presentation Contents

- Introduction
- Example: Solar Thermochemical Advanced Reaction System (STARS)
- General Principles: Integration of Solar Concentrators with Chemical Process Systems (and more)
- Focus Question: Can Concentrated Solar Thermochemical Systems Help Achieve a Carbon-Neutral Future?
- Summary & Conclusions

Solar Thermochemical Advanced Reaction System Solar-H₂ Generator: **Level 2 Design**

CH₄+

Net Reaction:

 $CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$

Sulfur

Microchannel Reactors and Heat Exchangers Over \$50M in Development Projects at the DOE Pacific Northwest National Laboratory (PNNL) over 25+ Years

Conventional Process Technology (1920s)

21st Century
Micro- and Meso- Channel Process Technology
(mimics nature)

Highly Efficient Microchannel Steam Reformer plus Heat Exchanger Network (2000)

General Principles: Concentrators, Receivers, Reactors, Separators, Heat Exchangers

Use the Second Law First:

- Endothermic unit chemical operations require exergy
- Exergetically
 efficiency
 components and
 systems accomplish
 the highest energy
 efficiencies

General Principles:

Concentrators, Receivers, Reactors...
Also Separators, Heat Exchangers

Match Solar Concentrators to the Unit Operation:

- Many unit chemical operations do not require high temperature heat
- High concentration ratios generate greater exergy content, but some solar concentrators produce thermal exergy at higher costs than others

Focus Question: Can Solar Thermochemical Systems Help Achieve a Carbon-Neutral Future?

- Replace fossil energy with solar thermal energy
- Across a large range of temperature demands
 - Reactors
 - Separators (e.g., sorption, distillation...)
 - Steam Generators and other Heat Exchangers

Focus Question: Can Solar Thermochemical Systems Help Achieve a Carbon-Neutral Future?

Pacific NW **National** Laboratory/ NASA

Solar Thermochemical Capture of Atmospheric CO_{2 10}

Summary and Conclusions 1 Key Questions

Value Proposition

- Who has the "pain" and how are you alleviating it?
- What is the cost target?

Architecture

- Distributed or central? Economies of scale or economies of hardware mass production?
- Reactions, separations or other? What temperature heat is required?
- Concentrator options, including availability of value chain? What about solarelectric hybrid systems? Do they enhance economic feasibility?
- Energy storage? (Cheap or expensive?)
- Efficiency: What are the sources and magnitudes of exergy destruction?

Summary and Conclusions 2 Key Questions

Carbon Management Value Proposition

- How can concentrated solar thermochemical operations reduce the demand for fossil energy?
- Can we use solar thermochemical systems to go carbon-neutral?
- How about carbon-negative?

CCS: Can we use solar thermal to accomplish affordable Carbon Capture and Sequestration? Yes

CCU: How about Carbon Capture and Use? Yes

Shovel-Ready Solar Thermochemical Projects

